

Dam Safety-Instrumentation & Monitoring

Date: 22 November 2019

Hanoi, Vietnam

INTERNATIONAL SYMPOSIUM ON ROCK MECHANICS AND ENGINEERING- THE 35TH VSRM ANNIVERSARY

Why is dam instrumentation and monitoring important?

- Basic question to answer: "How is the dam performing?"
- Dams change with age, and may develop defects over time
- Visualization surveillance is the backbone of all performance monitoring
- But-instrumentation can supply measurements of performance indictors that evade visual surveillance
- There are no two dams alike.

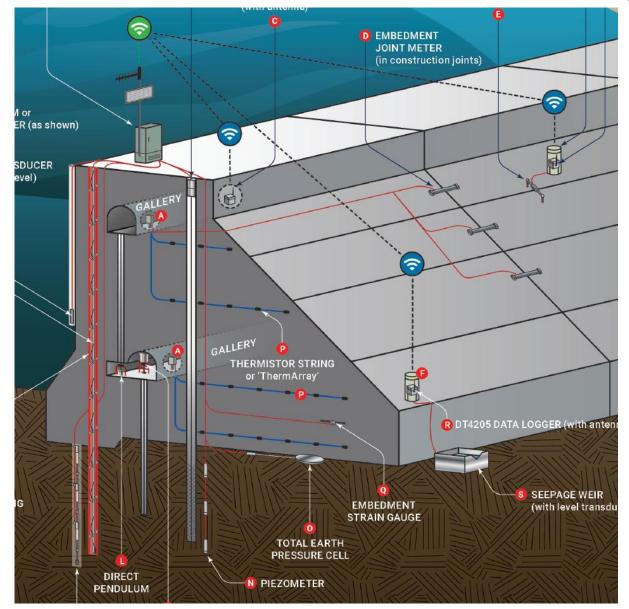
Understand what could cause failure

Which performance indicators needed

Plan & Implement the Program

Gather, manage, and present the data

Evaluate the data & Make decision



Physical Parameters ———	Sensors/ I	Data Output	
Pressure/ Temperature	VW Piezometers	Thermistors	
Flow	Weir	Standpipe	Readout (Manual)
Displacement	Inclinometer	Shape Array Accel.	DT Series (Semi- Auto)
Strain	Geo Acoustic Aware	Soil Extensometer	
Tilt	Liquid Settlement System	Crack-meter	RSTAR/ FlexDaq (Auto)
Weather	Extensometer (MPBX)	Extensometer (Magnetic)	
	Tiltmeter	Weather Station	

- Instruments used for measuring different dam performance parameters
- Select the appropriate instrumentation for a monitoring program to answer performance questions
- Instrumentation monitoring is a valuable tool for dam safety

Concrete Dam Application

Typical Parameters Monitored:

- Pore Pressure (piezometers)
- Deformation (inclinometers, in-place inclinometers, crack meters, joint meters, strain gauges)
- Seepage (thermistors, weirs/transducers)
- Tilt (pendulums)

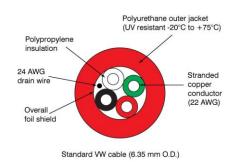
WATER PORE PRESSURE- PIEZOMETERS/ STANDPIPE

VW Piezometer

- Accuracy = 0.1% F.S., Resolution = 0.025% F.S.
- Hermetically sealed stainless steel housing
- Option for seawater → piezometer with bladder
- VW2106- durable, compact design for excellent portability and field use, stores location and data points

RST Cable (EL380004)

- 4 (2 twisted pairs), 22 AWG (0.33mm2), OD 6.35mm
- waterproof, abrasion- resistant polyurethane jacket
- available heavy-duty cable, OD 9.52mm, 12.7mm


Standpipe, Casagrande

- Specification 25mm ID with 3mm wall, OD = 31mm
- RST's Casagrande 1 inch, OD = 33.5mm, PP0312 (30.48cm)

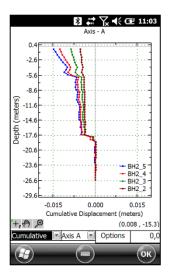
LATERAL GROUND DISPLACEMENT- MEMS INCLINOMETER SYSTEM (manual)

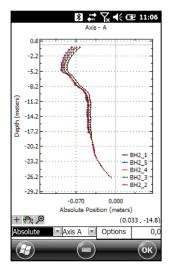
- Micro Elector Mechanical Systems (MEMS)- stable, sensitive, and accurate
- Used to measure horizontal displacement
- Applications: dams, landslides, rock cuts, diaphragm walls
- Installation: boreholes via inclinometer casing

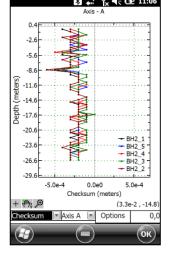
Used for manual readings, 0.5m, various cable lengths, FieldPC readout where

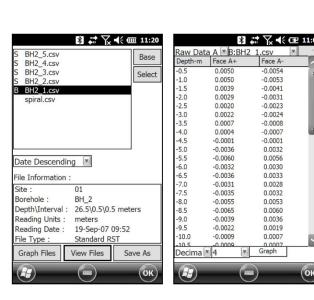
you can see the data at the borehole

System includes:

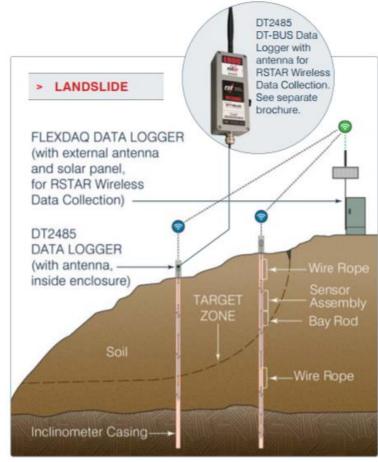

- 0.5m inclinometer probe
- Thin, lightweight Kevlar cable
- Reel- Bluetooth enabled
- Rugged Field PC2
- Casing cable grip
- Carrying case for system and reel
- Cable and chargers






LATERAL GROUND DISPLACEMENT- INCLINOMETER SYSTEM (manual)

- Wireless communication between readout and probe using Bluetooth
- Flash memory providing space for more than 1,000m000 readings
- Data analysis and comparison to previous data sets 'at the borehole'



LATERAL GROUND DISPLACEMENT- IN-PLACE INCLINOMETER SYSTEM (auto)

- Are installed in standard inclinometer casing
- Custom configuration- bay rods, wire rope (spacers); bay rods available: 0.5m, 1.0m, 1.5m, 2.0m, 3.0m
- Can be connected to Automatic Data Acquisition Systems (ADAS) including RSTAR and DT Link.
- Only require 1 cable downhole as digital bussed sensors are used to create DT-Bus
- Long term accuracy $\pm 0.002^{\circ}$ or 0.03 mm/m.

An automated shape-measuring tool, designed to offer maximum versatility and control:

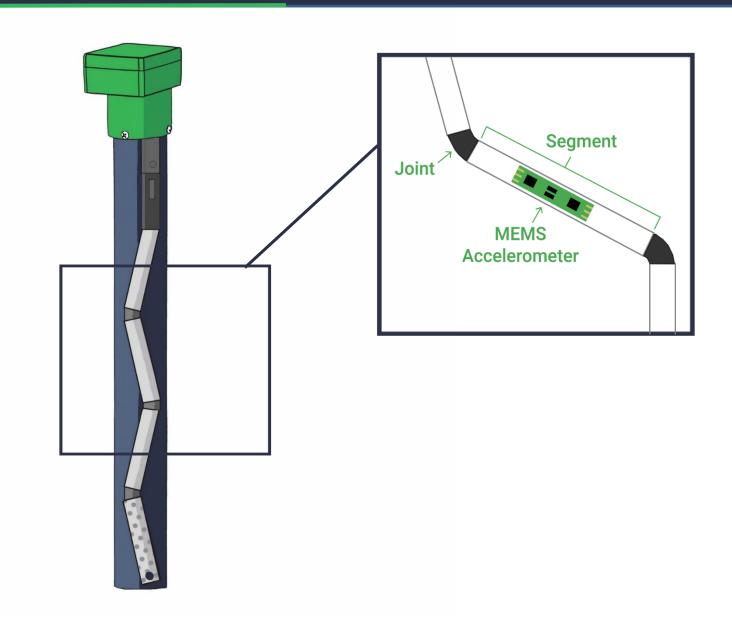
- Arrives assembled and calibrated on a reel
- Fast and simple installation
- Can be installed in any orientation*
- Resilience to deformation
- Sub-millimeter data accuracy
- Open data export
- Real-time monitoring
- Three models available: SAAV, SAAX and SAAScan

SAAV: Patented cyclical installation

CASING CAP

 A spring box assembly that holds the instrument in compression

EXTENSION TUBES


- Lower the zone of measurement
- Available in 1 and 2 m lengths
- Installed in the field

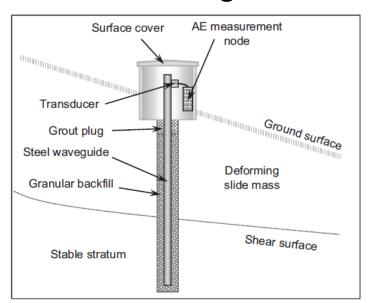
SENSORIZED SEGMENTS

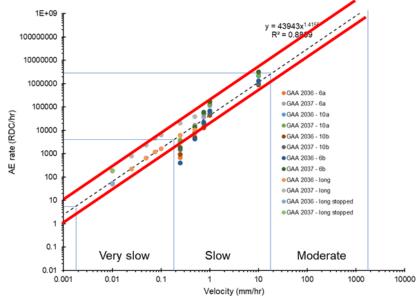
- Rigid stainless steel 0.5 m segments connected by flexible joints
- Each segment contains three MEMS tilt sensors, microprocessor and digital temperature sensor

SILENT SEGMENTS

- Raise the zone of measurement
- Installed in the field or during production

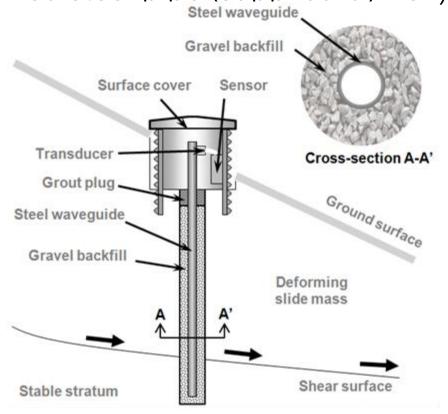
https://goo.gl/dAeJjD


INSTALLATION ADAPTABILITY



LATERAL GROUND DISPLACEMENT- GEO-ACCOUSTIC AWARE

- Monitors slope movements by picking up acoustic emission stress waves, generated by inter-particle friction in the granular borehole backfill
 - Waves are transmitted up a pipe (waveguide) installed in the borehole
 - Sensors mounted near the top of waveguide counts the waves, which correlate to a range of movement rates


FST

LATERAL GROUND DISPLACEMENT- GEO-ACCOUSTIC AWARE

Installation in the ground

- Waveguide is installed in borehole (5" minimum diameter)
- Studied for use on shallow installations
- 1.5" schedule 40, flush threaded custom 480, galvanized steel pipe (supplied by RST)
- Borehole backfilled with 5-10mm angular gravel
- Low cost for installed materials downhole

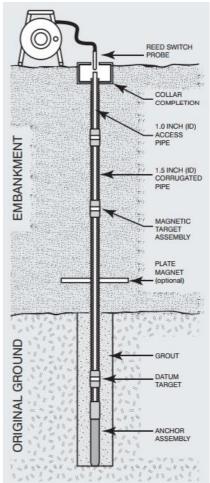
ISTINSTRUMENTS

SETTLEMENT/ DISPLACEMENT- MAGNETIC EXTENSOMETER (manual)

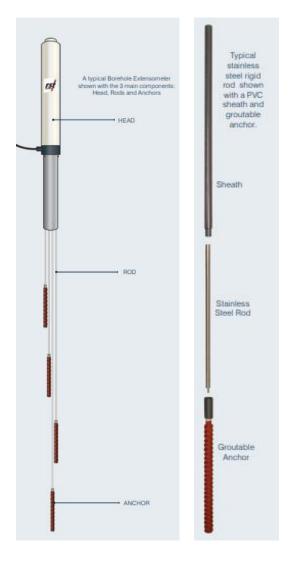
 Magnetic targets are anchored to the ground around a PVC pipes, inclinometer casing or corrugated pipe, anchors coupled to the pipes

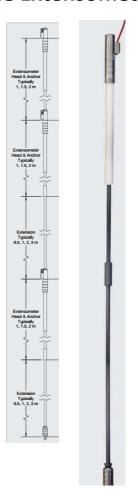
and free to move

• **Datum Magnets** are installed at the bottom of the pipe and grouted in place to server as a reference


• Plate Magnets are use in fill, large surface area for fill

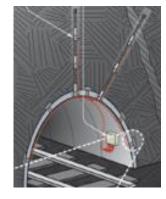
• **3- legged, 6-legged spider** anchors, deployed down the hole


Reed Switch Probe, 1mm resolution


SETTLEMENT/ DISPLACEMENT- EXTENSOMETER (auto)

Multi-Point Extensometer

In-Line Extensometer



Extensometer

- consist of reference head, rods, and anchors
- Customize configuration: number of points/ type of anchors/ range of sensors/ type of rods/ length of rods
- Rigid rod types vs. flexible rod types

Vibrating Wire In-Line Extensometer

- Low profile, small diameter (3" borehole)
- Large range, sum of all sensor range
- Easy assembly

IST

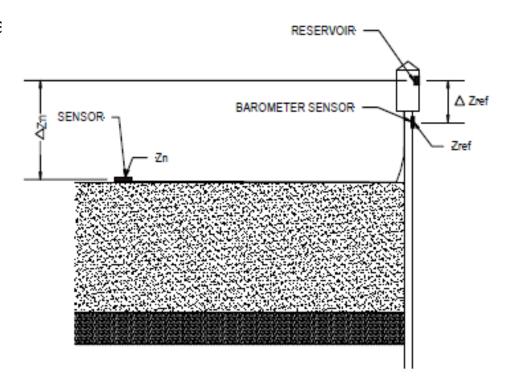
DISPLACEMENT

Crack Meter

- Designed to measure movement across surface cracks and joints
- Installed by grouting, bolting, etc.
- Available in 1D, 2D, or 3D (custom)

Soil Extensometer

- Measure lateral and longitudinal deformation on soil
- Consist of two flanges and telescopic section
- Be able to installed in a chained



SETTLEMENT/ DISPLACEMENT- LIQUID SETTLEMENT SYSTEM

- Monitors settlement or heave in soils and different types of man-made structures as embankments, and earth and rockfill dams. Measurement take relative to initial reading
- Consist of fluid body, reservoir, flexible tubing, and sensor and readout, sensors connected to fluid-filled tubes branching from the manifold
- Additional sensor at the manifold to compensate for chaevaporation
- Tubes to be protected, covered (from heating)
- Range: 2, 7, 17m (resolution 0.1% F.S.)

4. SETTLEMENT/ DISPLACEMENT- SUBMERSIBLE TILT METER

- Remote monitoring of tilt of submerged structures- inclination of concrete-face rockfill dams slabs and concrete dam
- MEMS inclinometer sensor and electronics mounted inside a rugged waterproof enclosure
- Solid construction for extreme endurance over long-term, high pressure underwater situations

AUTOMATION- DT SERIES DATA LOGGER

RST Instruments has been very successful with its line of small battery-powered

data loggers since 2005.

Vibrating Wire

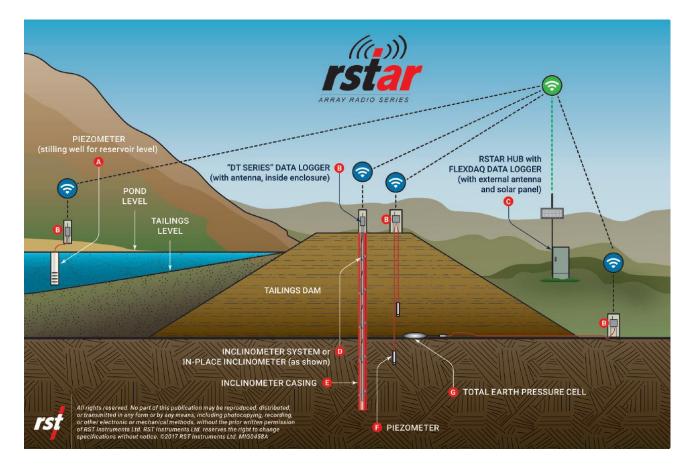
- DT2011B Single Channel VW Logger
- DT2055B 10 Channel VW Logger
- DT2040 40 Channel VW Logger

MEMS Tilt/Logger

- DTL201B Uniaxial Tilt Logger
- DTL202B Biaxisl Tilt Logger

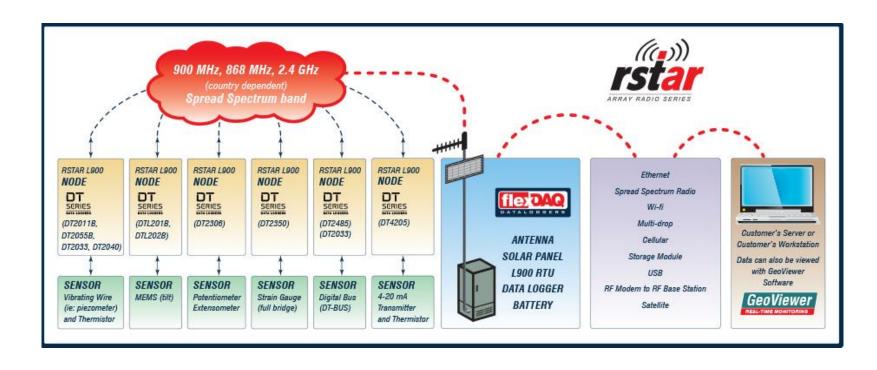
4-20mA: DT4205 10 Channel 4-20mA Logger

DT-BUS: DT2485 DT-Bus Logger


DT2306 Potentiometer: monitors up to 3-6 potentiometer sensor

DT2350 2 Channel Load Cell Data Logger: 2 channel **resistance** strain gauges load cells, and other strain gauge sensors, pressure, transducer, etc.

AUTOMATION- WIRELESS COLLECTION, RSTAR



- Wireless real-time automated data collection
- Simple network system
- 14 km open country hub-to- node range (900 MHz)
- Up to 255 Nodes (dataloggers per hub)
- Multiple telemetry options- cellular modem, wifi, radio, satellites, etc.

AUTOMATION- WIRELESS COLLECTION, RSTAR

Advantage

- Savings on cable cost
- Less cable to manage; low risk of cable damage
- Data collected saved on data logger and the hub as well (data backed up)
- Low power consumption (data logger, sleep schedule after transmitting), 1
 x D Cell battery
- Able to re-modify and re-configurated network during life of project

AUTOMATION- WIRELESS COLLECTION, RSTAR

Infrastructure → Roadways, Pipelines, Buildings, Bridges, Excavation Monitoring

Ontario (Canada), Saskatchewan (Canada), Spain, California (USA), Manitoba (Canada), Quebec (Canada), Turkey, UK, Alberta (Canada), Colorado (USA), Australia, Malaysia, Taiwan

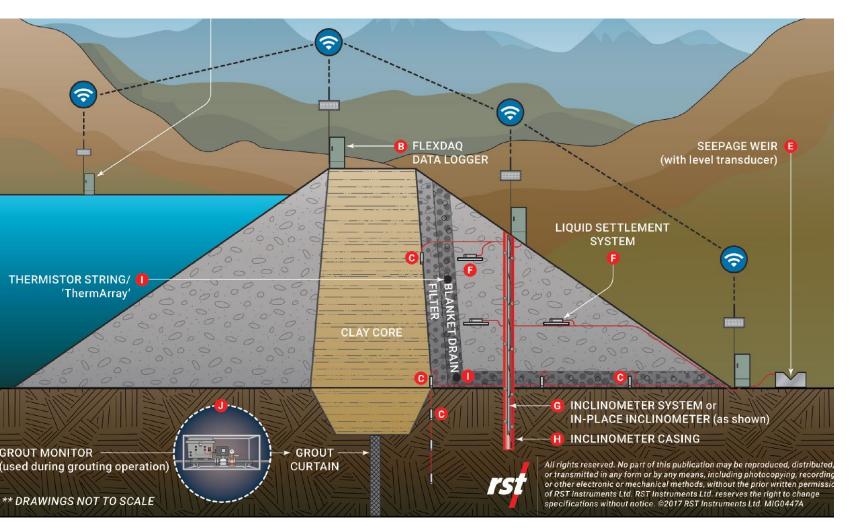
Mining → Open Pit Mine, Tailings Ponds

Australia, Peru, BC (Canada), Ontario (Canada), Dominican Republic, Chile, Serbia, Saskatchewan (Canada), Arizona (USA), Brazil, Chile, Colorado (USA), Alberta Oil Sands (Canada)

Utilities → Hydro Electric Dams, Concrete Gravity, CFRD, Dam Safety Monitoring

(20+ irrigation dams) Thailand, BC-Hydro (Canada), California (USA), Ontario (Canada), Slovenia, Malaysia

DT Datalogger and RSTAR Telemetry

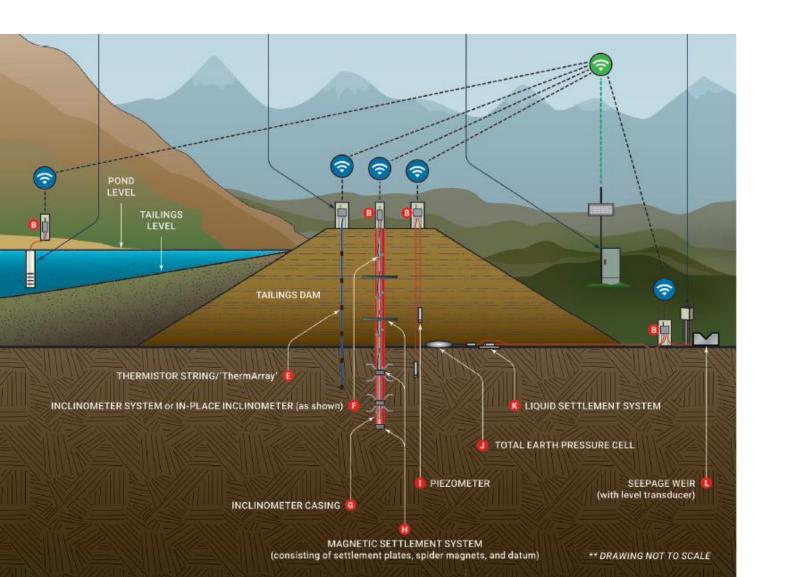

RST Dam Projects- South East Asia

Date	Project/ Location	Instrument Supplied	
2016- Present	Indonesia- Tapin, Kureto, Karolloe 4+ upcoming dams in 2020	VW Piezometers Soil Extensometer Weather Station VW Settlement System VW Crack Meter	DT Series Datalogger Standpipe Piezometers VW Soil Extensometer
2006- Present	Cua Dat Dam, Vietnam	VW Piezometer/ VW Readout Submersible ELS Tiltmeters VW Strain Gauges VW Settlement System w/ Multi-Position Reservoir VW Joint Meters	3D VW Joint Meters/ Crack Meters RSTAR System VW Soil Extensometer Stand Pipe Piezometers Water Level Meters In-Place Inclinometer
2004- Present	EGAT and RID Dams Upgrade, Thailand Over 20 dams instrumented	VW Piezometers Terminal Stations Digital Inclinometer System	Inclinometer Casing VW Readout- VW2106
2004- Present	Song Ba Ha Hydropower Project, Vietnam	VW Peizometers VW Jointmeters VW Crackmeters VW Strain Gauges VW Temperature Sensor	VW Readout- VW2106 Thermistors flexDAQ 10 Dataloggers Geoviewer Software
2004- Present	Pleikrong Hydropower Project, Vietnam	VW Piezometers VW Crack Meters VW Joint Meter VW Embedment Strain Gauge	Thermistors VW Readout- VW2106 Field Services
2003- Present	Gampo Dam, Korea	VW Piezometers Inclinometer Casing Digital Inclinometer	VW Soil Extensometer Reed Switch Settlement System VW Total Earth Pressure Cells
2003- Present	Yixing Pump Scheme, China	VW Piezometer Inclinometer Casing VW Soil Extensometer Vertical & Horizontal IPIs	Digital Inclinometer System VW Liquid Settlement System Portable Readouts

Earthfill Dam - Application

Typical Parameters Monitored:

- Pore Pressure (piezometers)
- Deformation (inclinometers, in-place inclinometers)
- Settlement (liquid settlement system)
- Seepage (weirs/transducers, grout monitor)


La Yesca Dam - Mexico

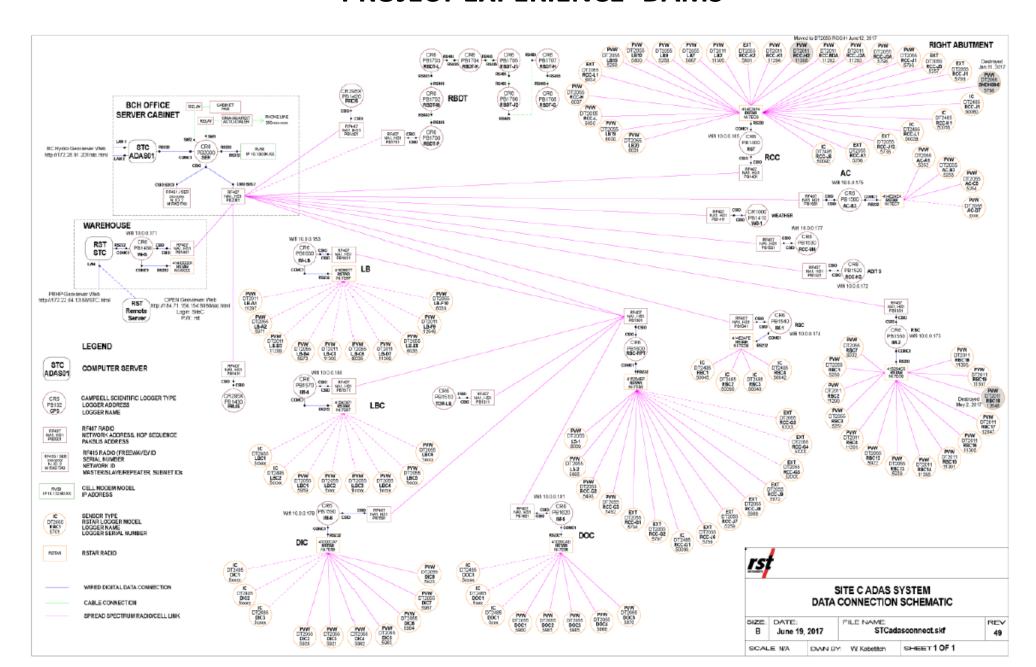
Tailings Dam Application

Typical Parameters Monitored:

- Pore Pressure (piezometers)
- Deformation (inclinometers, in-place inclinometers, ShapeArray – SAA, soil extensometers, Geo-Acoustic Aware -GAA)
- Settlement (settlement cells, magnetic settlement)
- Pond level (piezometer)
- Seepage (weir & transducer, thermistors)

Site C Dam - Canada

PROJECT EXPERIENCE- DAMS



- 1,1000 megawatt capacity
- RST Supplied Instrument/ Services
- Provided sensors, instrumentation
- Provided Data Acquisition System for the Dam
- Started Construction 2015, Completion in 2024

PROJECT EXPERIENCE- DAMS

